Jamie has 80 beads in blue and green in a ratio $5: 3$
They are then given additional beads.
They are given the same number of both colours and now have a ratio 13:9 How many beads were they given?

$$
\left.\begin{array}{cc}
B: G & \text { Total } \\
5: 3 & 8 \\
50: 30 & 80
\end{array}\right) \times 10
$$

Before		After	
$B: G$	Diff	$B: G$	Diff
$50: 30$	20	$13: 9$	4

Jamie has blue to green beads in a ratio $5: 2$
They exchange some blue beads for the same number of green beads.
The ratio of beads is now $4: 5$

What is the smallest number of beads they could have started with?
How many beads did they exchange?
$\left.\begin{array}{cccc}\text { Before } & & \text { After } & \\ B: G & \text { Total } & B: G & \text { Total } \\ 5: 2 & 7 & 4: 5 & 9\end{array}\right)$

Jamie has 90 beads in blue and green in the ratio $3: 7$
They gave away the same number of each bead.
Now they have beads in the ratio 1:7
How many beads do they have at the end?

$B: G$	Total
$3: 7$	
$:$	90

Before		After	
$B: G$	Diff	$B: G$	Diff
		$1: 7$	6

Jamie and Tyler have beads in a ratio of $4: 5$
Jamie gives some of their beads to Tyler.
The ratio is now $3: 7$
Find the smallest number of beads they could have started with and how many beads Jamie gives to Tyler.

The following ratios are equivalent
$x-1: x+1$ and $x+3: x+7$

Find x

$$
\begin{aligned}
& \left.\begin{array}{cc}
& \text { Diff } \\
x-1: x+1 & 2 \\
x+3: x+7 & 4
\end{array}\right) \times 2 \\
& 2(x-1)=x+3
\end{aligned}
$$

The following ratios are equivalent
$14-x: 4+x$ and $20-3 x: 1+3 x$ Find x
$\left.\begin{array}{cc} & \text { Total } \\ 14-x: 4+x & 18 \\ 20-3 x: 1+3 x & 21\end{array}\right)$

The following ratios are equivalent
$14+x: 19+x$ and $24+3 x: 30+3 x$
Find x

Jamie has 80 beads in blue and green in a ratio $5: 3$
They are then given additional beads.
They are given the same number of both colours and now have a ratio $13: 9$ How many beads were they given?

$$
\left.\begin{array}{cc}
B: G & \text { Total } \\
5: 3 & 8 \\
50: 30 & 80
\end{array}\right) \times 10
$$

$\left.\begin{array}{cccc}\text { Before } & & \text { After } & \\ B: G & \text { Diff } & B: G & \text { Diff } \\ 50: 30 & 20 & 13: 9 & 4 \\ & & \underline{65: 45} & 20\end{array}\right) \times 5$

15 of each color

Jamie has blue to green beads in a ratio $5: 2$
They exchange some blue beads for the same number of green beads.
The ratio of beads is now $4: 5$

What is the smallest number of beads they could have started with?
How many beads did they exchange?

Exchayed 27 beads

Jamie has 90 beads in blue and green in the ratio 3:7
They gave away the same number of each bead.
Now they have beads in the ratio 1:7
How many beads do they have at the end?

$$
\left.\begin{array}{cl}
B: G & \text { Total } \\
3: 7 & 10 \\
27: 63 & 90
\end{array}\right) \times 9
$$

$\left.\begin{array}{cccc}\text { Before } & & \text { After } \\ B: G & \text { Diff } & B: G & \text { Diff } \\ 27: 63 & 36 & 1: 7 & 6 \\ & & 6: 42 & 36\end{array}\right) \times 6$

48 beads at the end.

Jamie and Tyler have beads in a ratio of $4: 5$
Jamie gives some of their beads to Tyler.
The ratio is now $3: 7$
Find the smallest number of beads they could have started with and how many beads Jamie gives to Tyler.

$$
\left.\begin{array}{cc}
\text { Before } & \text { After } \\
\text { B:9 T } & B: 9 \\
4: 5 & T \\
3: 7 & 10 \\
40: 50 & 90
\end{array} \begin{array}{c}
27: 6390
\end{array}\right] \times 9
$$

90 beads
13 beads given to Tyler

The following ratios are equivalent
$x-1: x+1$ and $x+3: x+7$

Find x

$$
\left.\begin{array}{cc}
& \text { Diff } \\
x-1: x+1 & 2 \\
x+3: x+7 & 4
\end{array}\right) \times 2
$$

$$
2(x-1)=x+3
$$

$$
2 x-2=x+3
$$

$$
x=5
$$

The following ratios are equivalent
$14-x: 4+x$ and $20-3 x: 1+3 x$ Find x

$$
\left.\begin{array}{cc}
\text { Total } \\
14-x: 4+x & 18 \\
20-3 x: 1+3 x & 21
\end{array}\right) \times \frac{21}{18}=\frac{7}{6}
$$

$$
\frac{7}{6}(4+x)=1+3 x
$$

$$
7(4+x)=6(1+3 x)
$$

$$
28+7 x=6+18 x
$$

$$
22=11 x
$$

$$
x=2
$$

The following ratios are equivalent
$14+x: 19+x$ and $24+3 x: 30+3 x$
Find x

$$
\left.\begin{array}{rl}
14+x & : 19+x \quad \frac{\text { Diff }}{5} \\
24+3 x & : 30+3 x
\end{array}\right) x
$$

